# Relativitätstheorie und Kosmologie

Ruth Durrer Université de Genève, Département de Physique Théorique





▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

#### EINSTEIN SYMPOSIUM 100 Jahre Allgemeine Relativitätstheorie

13. November, 2015

- Die Kosmologie ist die Beschreibung des Universums auf den grössten uns zugänglichen Skalen.
- Die Newton'sche Gravitationstheorie erlaubt uns nicht wirklich die Beschreibung eines unendlich grossen, mit Materie gefüllten Universums ...
- In einem Brief an Richard Bentley (master of Trinity College, Cambridge) schreibt Newton (1692):

... if the Universe is finite..."it follows that all matter would fall down from the outsides & convene in the middle. Yet the matter in falling might concrete into many round masses like the bodies of the Planets & these by attracting one another might acquire an obliquity of descent by means of which they might fall not upon the great central body but on one side of it & fetch a compass about it"...

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 Die allgemeine Relativitätstheorie (ART) hingegen scheint für eine grossskalige Beschreibung wie geschaffen.
 Gut ein Jahr nach den Feldgleichungen (Februar 1917) publiziert Einstein eine kosmologische Lösung der Gleichungen.

- Die allgemeine Relativitätstheorie (ART) hingegen scheint für eine grossskalige Beschreibung wie geschaffen.
   Gut ein Jahr nach den Feldgleichungen (Februar 1917) publiziert Einstein eine kosmologische Lösung der Gleichungen.
- Einstein sucht nicht nur eine homogene und isotrope Lösung sondern auch eine statische. Dies zwingt ihn zur Einführung einer 'kosmologischen Konstante' Λ.

- Die allgemeine Relativitätstheorie (ART) hingegen scheint für eine grossskalige Beschreibung wie geschaffen.
   Gut ein Jahr nach den Feldgleichungen (Februar 1917) publiziert Einstein eine kosmologische Lösung der Gleichungen.
- Einstein sucht nicht nur eine homogene und isotrope Lösung sondern auch eine statische. Dies zwingt ihn zur Einführung einer 'kosmologischen Konstante' Λ.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

> Interessanterweise bemerkt er nicht dass seine Lösung instabil ist.

- Die allgemeine Relativitätstheorie (ART) hingegen scheint für eine grossskalige Beschreibung wie geschaffen.
   Gut ein Jahr nach den Feldgleichungen (Februar 1917) publiziert Einstein eine kosmologische Lösung der Gleichungen.
- Einstein sucht nicht nur eine homogene und isotrope Lösung sondern auch eine statische. Dies zwingt ihn zur Einführung einer 'kosmologischen Konstante' Λ.
- Interessanterweise bemerkt er nicht dass seine Lösung instabil ist.
- Wenige Jahre später (1922, 1924, 1927) finden Alexander Friedmann und dann George Lemaître dynamische Lösungen eines expandierenden oder kollabierenden, aber immer noch homogenen und isotropen Universums.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Die allgemeine Relativitätstheorie (ART) hingegen scheint für eine grossskalige Beschreibung wie geschaffen.
   Gut ein Jahr nach den Feldgleichungen (Februar 1917) publiziert Einstein eine kosmologische Lösung der Gleichungen.
- Einstein sucht nicht nur eine homogene und isotrope Lösung sondern auch eine statische. Dies zwingt ihn zur Einführung einer 'kosmologischen Konstante' A.
- Interessanterweise bemerkt er nicht dass seine Lösung instabil ist.
- Wenige Jahre später (1922, 1924, 1927) finden Alexander Friedmann und dann George Lemaître dynamische Lösungen eines expandierenden oder kollabierenden, aber immer noch homogenen und isotropen Universums.
- ► 1929 bestätigt E. Hubble die schon von Lemaître postulierte Expansion des beobachteten Universums.

- Die allgemeine Relativitätstheorie (ART) hingegen scheint für eine grossskalige Beschreibung wie geschaffen.
   Gut ein Jahr nach den Feldgleichungen (Februar 1917) publiziert Einstein eine kosmologische Lösung der Gleichungen.
- Einstein sucht nicht nur eine homogene und isotrope Lösung sondern auch eine statische. Dies zwingt ihn zur Einführung einer 'kosmologischen Konstante' A.
- Interessanterweise bemerkt er nicht dass seine Lösung instabil ist.
- Wenige Jahre später (1922, 1924, 1927) finden Alexander Friedmann und dann George Lemaître dynamische Lösungen eines expandierenden oder kollabierenden, aber immer noch homogenen und isotropen Universums.
- ► 1929 bestätigt E. Hubble die schon von Lemaître postulierte Expansion des beobachteten Universums.
- Aus den damals publizierten Daten leitet Lemaître schon um 1927 eine Ausdehnungsrate von 625km/s/Mpc ab. Dies ist fast 10mal mehr als der heute akzeptierte Wert.

#### Hubble's Law

Um 1929 publiziert Edwin Hubble sein Distanz-Geschwindikeits-Gesetz (Hubble's law) für das expandierende Universum:

 $v = H_0 d$ 







 $H_0\sim 500~{\rm km/s/Mpc}$   $1{\rm Mpc}\simeq 3.26\times 10^6~{\rm Lichtjahre}$ 

## Hubble's Law

Die neuesten Messungen bestätigen das expandierende Universum mit grosser Genauigkeit.



(日)、

-

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Auf den ersten Blick schon, aber...

Auf den ersten Blick schon, aber...

$$\left(\frac{\dot{a}}{a}\right)^2 = H^2 = \frac{8\pi G}{3}\rho + \frac{\Lambda}{3} - \frac{K}{a^2}, \qquad \frac{\ddot{a}}{a} = -\frac{4\pi G}{3}\rho + \frac{\Lambda}{3}$$

$$ho =$$
 Materiedichte,  $K =$  Raumkrümmung,  
 $\Lambda =$  Kosmologische Konstante,  $a =$  Skalenfaktor.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Auf den ersten Blick schon, aber...

$$\left(\frac{\dot{a}}{a}\right)^2 = H^2 = \frac{8\pi G}{3}\rho + \frac{\Lambda}{3} - \frac{K}{a^2}, \qquad \frac{\ddot{a}}{a} = -\frac{4\pi G}{3}\rho + \frac{\Lambda}{3}$$

ho = Materiedichte, K = Raumkrümmung,  $\Lambda =$  Kosmologische Konstante, a = Skalenfaktor.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Um mit den Beobachungen übereinzustimmen brauchen wir

• Dunkle Materie:  $\rho \sim 8\rho_B$ 

Auf den ersten Blick schon, aber...

$$\left(\frac{\dot{a}}{a}\right)^2 = H^2 = \frac{8\pi G}{3}\rho + \frac{\Lambda}{3} - \frac{K}{a^2}, \qquad \frac{\ddot{a}}{a} = -\frac{4\pi G}{3}\rho + \frac{\Lambda}{3}$$

 $\rho = Materiedichte, K = Raumkrümmung,$  $\Lambda = Kosmologische Konstante, a = Skalenfaktor.$ 

Um mit den Beobachungen übereinzustimmen brauchen wir

• Dunkle Materie:  $\rho \sim 8\rho_B$ 



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Dunkle Energie:  $\Lambda \sim 20\pi G\rho_0$ 

Die Existenz dieser beiden Komponenten ist nötig für die Übereinstimmung mit den Einstein'schen Gleichungen.

Auf den ersten Blick schon, aber...

$$\left(\frac{\dot{a}}{a}\right)^2 = H^2 = \frac{8\pi G}{3}\rho + \frac{\Lambda}{3} - \frac{K}{a^2}, \qquad \frac{\ddot{a}}{a} = -\frac{4\pi G}{3}\rho + \frac{\Lambda}{3}$$

ho = Materiedichte, K = Raumkrümmung,  $\Lambda =$  Kosmologische Konstante, a = Skalenfaktor.

Um mit den Beobachungen übereinzustimmen brauchen wir

• Dunkle Materie:  $\rho \sim 8\rho_B$ 



• Dunkle Energie:  $\Lambda \sim 20\pi G \rho_0$ 

Die Existenz dieser beiden Komponenten ist nötig für die Übereinstimmung mit den Einstein'schen Gleichungen.

Interessanterweise war das Universum einfacher zu früheren Zeiten...

## Ein expandierendes Universum muss nicht endlich sein

Wir beobachten die Distanz zwischen zwei Objekten (Galaxien):

$$d(t) = a(t)x$$
  $\dot{d} = Hd$   $H = \frac{\dot{a}}{a}$ 



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

• Das Universum expandiert. Extrapoliert man diese Expansion in die Vergangenheit, so findet man vor etwa  $t_0 = 1.38 \times 10^{10}$  Jahren eine Singularität, den Urknall oder 'Big Bang'. Wir nennen  $t_0$  'das Alter des Universums'.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Das Universum expandiert. Extrapoliert man diese Expansion in die Vergangenheit, so findet man vor etwa  $t_0 = 1.38 \times 10^{10}$  Jahren eine Singularität, den Urknall oder 'Big Bang'. Wir nennen  $t_0$  'das Alter des Universums'.
- Die Expansion ist adiabatisch. In der Vergangenheit war das Universum deshalb nicht nur viel dichter sondern auch viel heisser.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Das Universum expandiert. Extrapoliert man diese Expansion in die Vergangenheit, so findet man vor etwa  $t_0 = 1.38 \times 10^{10}$  Jahren eine Singularität, den Urknall oder 'Big Bang'. Wir nennen  $t_0$  'das Alter des Universums'.
- Die Expansion ist adiabatisch. In der Vergangenheit war das Universum deshalb nicht nur viel dichter sondern auch viel heisser.
- Vor t<sub>rec</sub> ~ 4 × 10<sup>5</sup> Jahren, war der Wasserstoff (das dominierende Element im Universum, etwa 75%), ionisiert. Die Elektronen/Protonen und die Photonen waren im thermischen Gleichgewicht.

・ロト・日本・モート モー うへぐ

- ▶ Das Universum expandiert. Extrapoliert man diese Expansion in die Vergangenheit, so findet man vor etwa  $t_0 = 1.38 \times 10^{10}$  Jahren eine Singularität, den Urknall oder 'Big Bang'. Wir nennen  $t_0$  'das Alter des Universums'.
- Die Expansion ist adiabatisch. In der Vergangenheit war das Universum deshalb nicht nur viel dichter sondern auch viel heisser.
- Vor t<sub>rec</sub> ~ 4 × 10<sup>5</sup> Jahren, war der Wasserstoff (das dominierende Element im Universum, etwa 75%), ionisiert. Die Elektronen/Protonen und die Photonen waren im thermischen Gleichgewicht.
- Nach t<sub>rec</sub> gibt es nicht mehr genügend Photonen mit einer Energie > 1Ry um den Wasserstoff ionisiert zu halten.

- Das Universum expandiert. Extrapoliert man diese Expansion in die Vergangenheit, so findet man vor etwa  $t_0 = 1.38 \times 10^{10}$  Jahren eine Singularität, den Urknall oder 'Big Bang'. Wir nennen  $t_0$  'das Alter des Universums'.
- Die Expansion ist adiabatisch. In der Vergangenheit war das Universum deshalb nicht nur viel dichter sondern auch viel heisser.
- Vor t<sub>rec</sub> ~ 4 × 10<sup>5</sup> Jahren, war der Wasserstoff (das dominierende Element im Universum, etwa 75%), ionisiert. Die Elektronen/Protonen und die Photonen waren im thermischen Gleichgewicht.
- Nach t<sub>rec</sub> gibt es nicht mehr genügend Photonen mit einer Energie > 1Ry um den Wasserstoff ionisiert zu halten.
- In diesem Zeitpunkt der Rekombination werden die Photonen frei und sie propagieren praktisch ohne Streuung bis in unsere Teleskope.

- ▶ Das Universum expandiert. Extrapoliert man diese Expansion in die Vergangenheit, so findet man vor etwa  $t_0 = 1.38 \times 10^{10}$  Jahren eine Singularität, den Urknall oder 'Big Bang'. Wir nennen  $t_0$  'das Alter des Universums'.
- Die Expansion ist adiabatisch. In der Vergangenheit war das Universum deshalb nicht nur viel dichter sondern auch viel heisser.
- Vor t<sub>rec</sub> ~ 4 × 10<sup>5</sup> Jahren, war der Wasserstoff (das dominierende Element im Universum, etwa 75%), ionisiert. Die Elektronen/Protonen und die Photonen waren im thermischen Gleichgewicht.
- Nach t<sub>rec</sub> gibt es nicht mehr genügend Photonen mit einer Energie > 1Ry um den Wasserstoff ionisiert zu halten.
- In diesem Zeitpunkt der Rekombination werden die Photonen frei und sie propagieren praktisch ohne Streuung bis in unsere Teleskope.
- Die Rekombination passiert zu einer Zeit als die Distanzen im Universum etwa 1090 mal kleiner sind als heute,  $a_{\rm dec} = 1/(1 + z_{\rm dec})$ ,  $z_{\rm dec} \simeq 1090$ . Die Temperatur der Photonen ist zu dieser Zeit  $T_{\rm dec} \simeq 3000$ K.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Nukleosynthese,  $T_{\rm nuc} \simeq 0.1 {\rm MeV}$ .

(ロ)、(型)、(E)、(E)、 E) の(の)

- Nukleosynthese,  $T_{\rm nuc} \simeq 0.1 {\rm MeV}$ .
- Confinement von Quarks in Baryonen,  $T_{\rm qcd} \simeq 100 {\rm MeV}$ .

- Nukleosynthese,  $T_{\rm nuc} \simeq 0.1 {\rm MeV}$ .
- Confinement von Quarks in Baryonen,  $T_{qcd} \simeq 100 \text{MeV}$ .
- Der elektroschwache Übergang ,  $T_{\rm ew} \simeq 200 {
  m GeV}.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Nukleosynthese,  $T_{\rm nuc} \simeq 0.1 {\rm MeV}$ .
- Confinement von Quarks in Baryonen,  $T_{qcd} \simeq 100 \text{MeV}$ .
- Der elektroschwache Übergang ,  $T_{\rm ew} \simeq 200 {
  m GeV}.$
- Inflation ...



#### Nukleosynthese

Die Einstein'schen Feldgleichungen verbinden den Materie-Inhalt des Universums mit seiner Expansionsrate und seiner räumlichen Krümmung.

$$H^2 = \frac{8\pi G}{3}\rho + \frac{1}{3}\Lambda - \frac{K}{a^2}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

a(t) = Skalenfaktor des Universums  $H(t) = \dot{a}/a =$  Hubble parameter

 $ho(t) \propto \left\{ egin{array}{c} a^{-4} & ({
m Radiation}) \ a^{-3} & ({
m massive Teilchen}) \end{array} 
ight.$ 

Zu frühen Zeiten dominiert die 'Strahlung' (relativistische Teilchen).

### Nukleosynthese

Vor der Bildung von He-4 (und Deuterium, Helium-3, Lithium),  $T_{\rm nuc} \simeq 0.1 \text{MeV}$ , ist die Dichte des Universums dominiert von relativistischen Teilchen: Photonen und Neutrinos (3 Familien).



Die Heliumhäufigkeit hängt stark von der Ausdehnungsrate H ab. Diese stimmt gut mit 3 Neutrinofamilien überein.

 $\textit{N}_{\rm eff} = 3.04 \pm 0.33$ 

(Planck collaboration, 2015) Dies bestätigt die Einstein'schen Gleichungen mit einer Präzision von etwa 5%

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Figur von Nollett & Holder '12

## Nach der Rekombination



### Das Spektrum der kosmischen Mikrowellenstrahlung (CMB)

Die Photonen im Universum die bei  $z \simeq 1090$  frei wurden, sind um 1965 als 'kosmische Mikrowellenstrahlung' (CMB) entdeckt worden. Sie haben heute eine Temperatur  $T = T_{\rm dec}/1090 \simeq 2.7$ K und gehorchen mit grösster Präzision einer Planck Verteilung.



・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

-

## Fluktuationen im kosmischen Mikrowellenhintergrund



Planckdaten 2015



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

## Die grossen Strukturen im Universum



M. Blanton and the Sloan Digital Sky Survey Team.

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ④ < ④ >

#### Galaxien Potenz-Spektrum



▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへ(で)

## Verzerrung der Rotverschiebung in BOSS

(BOSS= Baryon Oscillation Spectroscopic Survey)

#### Reid et al. '12



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

## Verzerrung der Rotverschiebung in BOSS



Mit der Analyse der Rotverschiebungsverzerrung können wir messen wie schnell Strukturen anwachsen und dies mit den Vorhersagen der Relativitätstheorie vergleichen.

#### Messung des Gravitationslinsen Potentials

RD & F. Montanari '15



Durch die Korrelation von Vordergrund- und Hintergrund-Galaxien kann in Galaxien 'surveys' das die Ablenkung des Lichts im Gravitationspotential der Vordergrund-Galaxien gemessen werden.

 Ohne die Relativitätstheorie ist eine konsistente Theorie des Universums als ganzes nicht wirklich möglich.

- Ohne die Relativitätstheorie ist eine konsistente Theorie des Universums als ganzes nicht wirklich möglich.
- Die beobachtete Expansion des Universums benötigt dunkle Materie (26%) und dunkle Energie (70%).
- Diese Komponenten, welche nur durch ihre gravitative Wechselwirkung beobachtet sind, stimmen auch mit Messungen der Fluktuationen überein (CMB, großskalige Struktur).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

- Ohne die Relativitätstheorie ist eine konsistente Theorie des Universums als ganzes nicht wirklich möglich.
- Die beobachtete Expansion des Universums benötigt dunkle Materie (26%) und dunkle Energie (70%).
- Diese Komponenten, welche nur durch ihre gravitative Wechselwirkung beobachtet sind, stimmen auch mit Messungen der Fluktuationen überein (CMB, großskalige Struktur).
- ► Zur Zeit der Nuklosynthese, T ≃ 10<sup>9</sup>K ≃ 0.1MeV, t ~ 100sec, erlaubt die Heliumhäufigkeit eine indirekte Messung der Expansionsrate. Diese stimmt exzellent mit den Einstein'schen Gleichungen überein.

- Ohne die Relativitätstheorie ist eine konsistente Theorie des Universums als ganzes nicht wirklich möglich.
- Die beobachtete Expansion des Universums benötigt dunkle Materie (26%) und dunkle Energie (70%).
- Diese Komponenten, welche nur durch ihre gravitative Wechselwirkung beobachtet sind, stimmen auch mit Messungen der Fluktuationen überein (CMB, großskalige Struktur).
- ► Zur Zeit der Nuklosynthese, T ≃ 10<sup>9</sup>K ≃ 0.1MeV, t ~ 100sec, erlaubt die Heliumhäufigkeit eine indirekte Messung der Expansionsrate. Diese stimmt exzellent mit den Einstein'schen Gleichungen überein.
- Bedeutet die Entdeckung der 'dunklen Energie' (beschleunigte Ausdehnung) eine Abweichung von der Relativitätstheorie auf sehr grossen Skalen?

- Ohne die Relativitätstheorie ist eine konsistente Theorie des Universums als ganzes nicht wirklich möglich.
- Die beobachtete Expansion des Universums benötigt dunkle Materie (26%) und dunkle Energie (70%).
- Diese Komponenten, welche nur durch ihre gravitative Wechselwirkung beobachtet sind, stimmen auch mit Messungen der Fluktuationen überein (CMB, großskalige Struktur).
- ► Zur Zeit der Nuklosynthese, T ≃ 10<sup>9</sup>K ≃ 0.1MeV, t ~ 100sec, erlaubt die Heliumhäufigkeit eine indirekte Messung der Expansionsrate. Diese stimmt exzellent mit den Einstein'schen Gleichungen überein.
- Bedeutet die Entdeckung der 'dunklen Energie' (beschleunigte Ausdehnung) eine Abweichung von der Relativitätstheorie auf sehr grossen Skalen?

▶ Weitere Tests der ART auf grossen Skalen sind möglich und nötig.