Relativitätstheorie und Kosmologie

Ruth Durrer Université de Genève, Département de Physique Théorique

EINSTEIN SYMPOSIUM 100 Jahre Allgemeine Relativitätstheorie 13. November, 2015

- Die Kosmologie ist die Beschreibung des Universums auf den grössten uns zugänglichen Skalen.
- ▶ Die Newton'sche Gravitationstheorie erlaubt uns nicht wirklich die Beschreibung eines unendlich grossen, mit Materie gefüllten Universums ...
- ▶ In einem Brief an Richard Bentley (master of Trinity College, Cambridge) schreibt Newton (1692):
 - ... if the Universe is finite..."it follows that all matter would fall down from the outsides & convene in the middle. Yet the matter in falling might concrete into many round masses like the bodies of the Planets & these by attracting one another might acquire an obliquity of descent by means of which they might fall not upon the great central body but on one side of it & fetch a compass about it"...

▶ Die allgemeine Relativitätstheorie (ART) hingegen scheint für eine grossskalige Beschreibung wie geschaffen. Gut ein Jahr nach den Feldgleichungen (Februar 1917) publiziert Einstein eine kosmologische Lösung der Gleichungen.

- Die allgemeine Relativitätstheorie (ART) hingegen scheint für eine grossskalige Beschreibung wie geschaffen.
 Gut ein Jahr nach den Feldgleichungen (Februar 1917) publiziert Einstein eine kosmologische Lösung der Gleichungen.
- Einstein sucht nicht nur eine homogene und isotrope Lösung sondern auch eine statische. Dies zwingt ihn zur Einführung einer 'kosmologischen Konstante' Λ.

- Die allgemeine Relativitätstheorie (ART) hingegen scheint für eine grossskalige Beschreibung wie geschaffen.
 Gut ein Jahr nach den Feldgleichungen (Februar 1917) publiziert Einstein eine kosmologische Lösung der Gleichungen.
- Einstein sucht nicht nur eine homogene und isotrope Lösung sondern auch eine statische. Dies zwingt ihn zur Einführung einer 'kosmologischen Konstante' Λ.
- ▶ Interessanterweise bemerkt er nicht dass seine Lösung instabil ist.

- Die allgemeine Relativitätstheorie (ART) hingegen scheint für eine grossskalige Beschreibung wie geschaffen.
 Gut ein Jahr nach den Feldgleichungen (Februar 1917) publiziert Einstein eine kosmologische Lösung der Gleichungen.
- Einstein sucht nicht nur eine homogene und isotrope Lösung sondern auch eine statische. Dies zwingt ihn zur Einführung einer 'kosmologischen Konstante' Λ.
- ▶ Interessanterweise bemerkt er nicht dass seine Lösung instabil ist.
- Wenige Jahre später (1922, 1924, 1927) finden Alexander Friedmann und dann George Lemaître dynamische Lösungen eines expandierenden oder kollabierenden, aber immer noch homogenen und isotropen Universums.

- Die allgemeine Relativitätstheorie (ART) hingegen scheint für eine grossskalige Beschreibung wie geschaffen.
 Gut ein Jahr nach den Feldgleichungen (Februar 1917) publiziert Einstein eine kosmologische Lösung der Gleichungen.
- Einstein sucht nicht nur eine homogene und isotrope Lösung sondern auch eine statische. Dies zwingt ihn zur Einführung einer 'kosmologischen Konstante' Λ.
- ▶ Interessanterweise bemerkt er nicht dass seine Lösung instabil ist.
- Wenige Jahre später (1922, 1924, 1927) finden Alexander Friedmann und dann George Lemaître dynamische Lösungen eines expandierenden oder kollabierenden, aber immer noch homogenen und isotropen Universums.
- ▶ 1929 bestätigt E. Hubble die schon von Lemaître postulierte Expansion des beobachteten Universums.

- Die allgemeine Relativitätstheorie (ART) hingegen scheint für eine grossskalige Beschreibung wie geschaffen.
 Gut ein Jahr nach den Feldgleichungen (Februar 1917) publiziert Einstein eine kosmologische Lösung der Gleichungen.
- Einstein sucht nicht nur eine homogene und isotrope Lösung sondern auch eine statische. Dies zwingt ihn zur Einführung einer 'kosmologischen Konstante' Λ.
- ▶ Interessanterweise bemerkt er nicht dass seine Lösung instabil ist.
- Wenige Jahre später (1922, 1924, 1927) finden Alexander Friedmann und dann George Lemaître dynamische Lösungen eines expandierenden oder kollabierenden, aber immer noch homogenen und isotropen Universums.
- ▶ 1929 bestätigt E. Hubble die schon von Lemaître postulierte Expansion des beobachteten Universums.
- ► Aus den damals publizierten Daten leitet Lemaître schon um 1927 eine Ausdehnungsrate von 625km/s/Mpc ab. Dies ist fast 10mal mehr als der heute akzeptierte Wert.

Hubble's Law

Um 1929 publiziert Edwin Hubble sein Distanz-Geschwindikeits-Gesetz (Hubble's law) für das expandierende Universum:

$$v = H_0 d$$

Hubble mit dem 48 inch Telescope auf Mount Palomar

 $H_0 \sim 500 \text{ km/s/Mpc}$ 1Mpc $\simeq 3.26 \times 10^6 \text{ Lichtjahre}$

Hubble's Law

Die neuesten Messungen bestätigen das expandierende Universum mit grosser Genauigkeit.

Betoule et al. 2014

z=v/c für $v\ll c$ $c\simeq 300'000 {\rm km/s}$ ist die Lichtgeschwindigkeit μ ist ein (log) Mass für die Distanz

Auf den ersten Blick schon, aber...

Auf den ersten Blick schon, aber...

$$\left(\frac{\dot{a}}{a}\right)^2 = H^2 = \frac{8\pi G}{3}\rho + \frac{\Lambda}{3} - \frac{K}{a^2} , \qquad \frac{\ddot{a}}{a} = -\frac{4\pi G}{3}\rho + \frac{\Lambda}{3}$$

 $\rho = \mbox{Materiedichte}, \qquad \qquad \mbox{K} = \mbox{Raumkrümmung}, \\ \Lambda = \mbox{Kosmologische Konstante}, \qquad \qquad a = \mbox{Skalenfaktor}.$

Auf den ersten Blick schon, aber...

$$\left(\frac{\dot{a}}{a}\right)^2 = H^2 = \frac{8\pi G}{3}\rho + \frac{\Lambda}{3} - \frac{K}{a^2} , \qquad \frac{\ddot{a}}{a} = -\frac{4\pi G}{3}\rho + \frac{\Lambda}{3}$$

 $ho = {\sf Materiedichte}, \qquad {\sf K} = {\sf Raumkrümmung}, \\ {\sf \Lambda} = {\sf Kosmologische Konstante}, \qquad {\sf a} = {\sf Skalenfaktor}.$

Um mit den Beobachungen übereinzustimmen brauchen wir

▶ Dunkle Materie: $\rho \sim 8\rho_B$

Auf den ersten Blick schon, aber...

$$\left(\frac{\ddot{a}}{a}\right)^2 = H^2 = \frac{8\pi G}{3}\rho + \frac{\Lambda}{3} - \frac{K}{a^2}, \qquad \frac{\ddot{a}}{a} = -\frac{4\pi G}{3}\rho + \frac{\Lambda}{3}$$

 $ho = {\sf Materiedichte}, \qquad {\sf K} = {\sf Raumkrümmung}, \\ {\sf \Lambda} = {\sf Kosmologische Konstante}, \qquad {\sf a} = {\sf Skalenfaktor}.$

Um mit den Beobachungen übereinzustimmen brauchen wir

▶ Dunkle Materie: $\rho \sim 8\rho_B$

▶ Dunkle Energie: $\Lambda \sim 20\pi G \rho_0$

Die Existenz dieser beiden Komponenten ist nötig für die Übereinstimmung mit den Einstein'schen Gleichungen.

Auf den ersten Blick schon, aber...

$$\left(\frac{\dot{a}}{a}\right)^2 = H^2 = \frac{8\pi G}{3}\rho + \frac{\Lambda}{3} - \frac{K}{a^2} , \qquad \frac{\ddot{a}}{a} = -\frac{4\pi G}{3}\rho + \frac{\Lambda}{3}$$

 $ho = {\sf Materiedichte}, \qquad {\sf K} = {\sf Raumkr\"ummung},$

 $\Lambda = \text{Kosmologische Konstante}, \quad a = \text{Skalenfaktor}.$

Um mit den Beobachungen übereinzustimmen brauchen wir

▶ Dunkle Materie: $\rho \sim 8\rho_B$

▶ Dunkle Energie: $\Lambda \sim 20\pi G \rho_0$

Die Existenz dieser beiden Komponenten ist nötig für die Übereinstimmung mit den Einstein'schen Gleichungen.

Interessanterweise war das Universum einfacher zu früheren Zeiten...

Ein expandierendes Universum muss nicht endlich sein

Wir beobachten die Distanz zwischen zwei Objekten (Galaxien):

$$d(t) = a(t)x$$
 $\dot{d} = Hd$ $H = \frac{\dot{a}}{a}$.

▶ Das Universum expandiert. Extrapoliert man diese Expansion in die Vergangenheit, so findet man vor etwa $t_0 = 1.38 \times 10^{10}$ Jahren eine Singularität, den Urknall oder 'Big Bang'. Wir nennen t_0 'das Alter des Universums'.

- ▶ Das Universum expandiert. Extrapoliert man diese Expansion in die Vergangenheit, so findet man vor etwa $t_0 = 1.38 \times 10^{10}$ Jahren eine Singularität, den Urknall oder 'Big Bang'. Wir nennen t_0 'das Alter des Universums'.
- ▶ Die Expansion ist adiabatisch. In der Vergangenheit war das Universum deshalb nicht nur viel dichter sondern auch viel heisser.

- ▶ Das Universum expandiert. Extrapoliert man diese Expansion in die Vergangenheit, so findet man vor etwa $t_0 = 1.38 \times 10^{10}$ Jahren eine Singularität, den Urknall oder 'Big Bang'. Wir nennen t_0 'das Alter des Universums'.
- Die Expansion ist adiabatisch. In der Vergangenheit war das Universum deshalb nicht nur viel dichter sondern auch viel heisser.
- Vor $t_{\rm rec} \sim 4 \times 10^5$ Jahren, war der Wasserstoff (das dominierende Element im Universum, etwa 75%), ionisiert. Die Elektronen/Protonen und die Photonen waren im thermischen Gleichgewicht.

- ▶ Das Universum expandiert. Extrapoliert man diese Expansion in die Vergangenheit, so findet man vor etwa $t_0 = 1.38 \times 10^{10}$ Jahren eine Singularität, den Urknall oder 'Big Bang'. Wir nennen t_0 'das Alter des Universums'.
- Die Expansion ist adiabatisch. In der Vergangenheit war das Universum deshalb nicht nur viel dichter sondern auch viel heisser.
- ▶ Vor $t_{\rm rec} \sim 4 \times 10^5$ Jahren, war der Wasserstoff (das dominierende Element im Universum, etwa 75%), ionisiert. Die Elektronen/Protonen und die Photonen waren im thermischen Gleichgewicht.
- Nach $t_{\rm rec}$ gibt es nicht mehr genügend Photonen mit einer Energie > 1Ry um den Wasserstoff ionisiert zu halten.

- ▶ Das Universum expandiert. Extrapoliert man diese Expansion in die Vergangenheit, so findet man vor etwa $t_0 = 1.38 \times 10^{10}$ Jahren eine Singularität, den Urknall oder 'Big Bang'. Wir nennen t_0 'das Alter des Universums'.
- Die Expansion ist adiabatisch. In der Vergangenheit war das Universum deshalb nicht nur viel dichter sondern auch viel heisser.
- ▶ Vor $t_{\rm rec} \sim 4 \times 10^5$ Jahren, war der Wasserstoff (das dominierende Element im Universum, etwa 75%), ionisiert. Die Elektronen/Protonen und die Photonen waren im thermischen Gleichgewicht.
- Nach t_{rec} gibt es nicht mehr genügend Photonen mit einer Energie > 1Ry um den Wasserstoff ionisiert zu halten.
- ▶ In diesem Zeitpunkt der Rekombination werden die Photonen frei und sie propagieren praktisch ohne Streuung bis in unsere Teleskope.

- ▶ Das Universum expandiert. Extrapoliert man diese Expansion in die Vergangenheit, so findet man vor etwa $t_0 = 1.38 \times 10^{10}$ Jahren eine Singularität, den Urknall oder 'Big Bang'. Wir nennen t_0 'das Alter des Universums'.
- Die Expansion ist adiabatisch. In der Vergangenheit war das Universum deshalb nicht nur viel dichter sondern auch viel heisser.
- ▶ Vor $t_{\rm rec} \sim 4 \times 10^5$ Jahren, war der Wasserstoff (das dominierende Element im Universum, etwa 75%), ionisiert. Die Elektronen/Protonen und die Photonen waren im thermischen Gleichgewicht.
- Nach $t_{\rm rec}$ gibt es nicht mehr genügend Photonen mit einer Energie > 1Ry um den Wasserstoff ionisiert zu halten.
- ▶ In diesem Zeitpunkt der Rekombination werden die Photonen frei und sie propagieren praktisch ohne Streuung bis in unsere Teleskope.
- ▶ Die Rekombination passiert zu einer Zeit als die Distanzen im Universum etwa 1090 mal kleiner sind als heute, $a_{\rm dec}=1/(1+z_{\rm dec})$, $z_{\rm dec}\simeq 1090$. Die Temperatur der Photonen ist zu dieser Zeit $T_{\rm dec}\simeq 3000$ K.

Bevor der Rekombination haben vermutlich folgende andere wichtige Ereignisse stattgefunden:

▶ Nukleosynthese, $T_{\rm nuc} \simeq 0.1 {\rm MeV}$.

Bevor der Rekombination haben vermutlich folgende andere wichtige Ereignisse stattgefunden:

- ▶ Nukleosynthese, $T_{\rm nuc} \simeq 0.1 {\rm MeV}$.
- ▶ Confinement von Quarks in Baryonen, $T_{\rm qcd} \simeq 100 {\rm MeV}$.

Bevor der Rekombination haben vermutlich folgende andere wichtige Ereignisse stattgefunden:

- ▶ Nukleosynthese, $T_{\rm nuc} \simeq 0.1 {\rm MeV}$.
- ▶ Confinement von Quarks in Baryonen, $T_{\rm qcd} \simeq 100 {\rm MeV}$.
- ▶ Der elektroschwache Übergang , $T_{\rm ew} \simeq 200 {\rm GeV}$.

Bevor der Rekombination haben vermutlich folgende andere wichtige Ereignisse stattgefunden:

- ▶ Nukleosynthese, $T_{\rm nuc} \simeq 0.1 {\rm MeV}$.
- ▶ Confinement von Quarks in Baryonen, $T_{\text{qcd}} \simeq 100 \text{MeV}$.
- ▶ Der elektroschwache Übergang , $T_{\rm ew} \simeq 200 {\rm GeV}$.
- ▶ Inflation ...

Nukleosynthese

Die Einstein'schen Feldgleichungen verbinden den Materie-Inhalt des Universums mit seiner Expansionsrate und seiner räumlichen Krümmung.

$$H^2 = \frac{8\pi G}{3}\rho + \frac{1}{3}\Lambda - \frac{K}{a^2}$$

a(t) = Skalenfaktor des Universums $H(t) = \dot{a}/a = \text{Hubble parameter}$

$$ho(t) \propto \left\{ egin{array}{ll} a^{-4} & ext{(Radiation)} \ a^{-3} & ext{(massive Teilchen)} \end{array}
ight.$$

Zu frühen Zeiten dominiert die 'Strahlung' (relativistische Teilchen).

Nukleosynthese

Vor der Bildung von He-4 (und Deuterium, Helium-3, Lithium), $T_{\rm nuc} \simeq 0.1 \text{MeV}$, ist die Dichte des Universums dominiert von relativistischen Teilchen: Photonen und Neutrinos (3 Familien).

Die Heliumhäufigkeit hängt stark von der Ausdehnungsrate H ab. Diese stimmt gut mit 3 Neutrinofamilien überein.

$$N_{\rm eff}=3.04\pm0.33$$

(Planck collaboration, 2015) Dies bestätigt die Einstein'schen Gleichungen mit einer Präzision von etwa 5%

Figur von Nollett & Holder '12

Nach der Rekombination

Das Spektrum der kosmischen Mikrowellenstrahlung (CMB)

Die Photonen im Universum die bei $z\simeq 1090$ frei wurden, sind um 1965 als 'kosmische Mikrowellenstrahlung' (CMB) entdeckt worden. Sie haben heute eine Temperatur $T=T_{\rm dec}/1090\simeq 2.7{\rm K}$ und gehorchen mit grösster Präzision einer Planck Verteilung.

Fluktuationen im kosmischen Mikrowellenhintergrund

Planckdaten 2015

$$D_\ell = \ell(\ell+1)C_\ell/(2\pi)$$

Die grossen Strukturen im Universum

M. Blanton and the Sloan Digital Sky Survey Team.

Galaxien Potenz-Spektrum

Verzerrung der Rotverschiebung in BOSS

(BOSS= Baryon Oscillation Spectroscopic Survey)

Reid et al. '12

Verzerrung der Rotverschiebung in BOSS

Mit der Analyse der Rotverschiebungsverzerrung können wir messen wie schnell Strukturen anwachsen und dies mit den Vorhersagen der Relativitätstheorie vergleichen.

Messung des Gravitationslinsen Potentials

RD & F. Montanari '15

Durch die Korrelation von Vordergrund- und Hintergrund-Galaxien kann in Galaxien 'surveys' das die Ablenkung des Lichts im Gravitationspotential der Vordergrund-Galaxien gemessen werden.

Ohne die Relativitätstheorie ist eine konsistente Theorie des Universums als ganzes nicht wirklich möglich.

- Ohne die Relativitätstheorie ist eine konsistente Theorie des Universums als ganzes nicht wirklich möglich.
- ▶ Die beobachtete Expansion des Universums benötigt dunkle Materie (26%) und dunkle Energie (70%).
- Diese Komponenten, welche nur durch ihre gravitative Wechselwirkung beobachtet sind, stimmen auch mit Messungen der Fluktuationen überein (CMB, großskalige Struktur).

- Ohne die Relativitätstheorie ist eine konsistente Theorie des Universums als ganzes nicht wirklich möglich.
- ▶ Die beobachtete Expansion des Universums benötigt dunkle Materie (26%) und dunkle Energie (70%).
- Diese Komponenten, welche nur durch ihre gravitative Wechselwirkung beobachtet sind, stimmen auch mit Messungen der Fluktuationen überein (CMB, großskalige Struktur).
- ▶ Zur Zeit der Nuklosynthese, $T \simeq 10^9 K \simeq 0.1 {\rm MeV}$, $t \sim 100 {\rm sec}$, erlaubt die Heliumhäufigkeit eine indirekte Messung der Expansionsrate. Diese stimmt exzellent mit den Einstein'schen Gleichungen überein.

- Ohne die Relativitätstheorie ist eine konsistente Theorie des Universums als ganzes nicht wirklich möglich.
- ▶ Die beobachtete Expansion des Universums benötigt dunkle Materie (26%) und dunkle Energie (70%).
- Diese Komponenten, welche nur durch ihre gravitative Wechselwirkung beobachtet sind, stimmen auch mit Messungen der Fluktuationen überein (CMB, großskalige Struktur).
- ▶ Zur Zeit der Nuklosynthese, $T \simeq 10^9 K \simeq 0.1 \text{MeV}$, $t \sim 100 \text{sec}$, erlaubt die Heliumhäufigkeit eine indirekte Messung der Expansionsrate. Diese stimmt exzellent mit den Einstein'schen Gleichungen überein.
- Bedeutet die Entdeckung der 'dunklen Energie' (beschleunigte Ausdehnung) eine Abweichung von der Relativitätstheorie auf sehr grossen Skalen?

- Ohne die Relativitätstheorie ist eine konsistente Theorie des Universums als ganzes nicht wirklich möglich.
- ▶ Die beobachtete Expansion des Universums benötigt dunkle Materie (26%) und dunkle Energie (70%).
- Diese Komponenten, welche nur durch ihre gravitative Wechselwirkung beobachtet sind, stimmen auch mit Messungen der Fluktuationen überein (CMB, großskalige Struktur).
- ▶ Zur Zeit der Nuklosynthese, $T \simeq 10^9 K \simeq 0.1 \text{MeV}$, $t \sim 100 \text{sec}$, erlaubt die Heliumhäufigkeit eine indirekte Messung der Expansionsrate. Diese stimmt exzellent mit den Einstein'schen Gleichungen überein.
- Bedeutet die Entdeckung der 'dunklen Energie' (beschleunigte Ausdehnung) eine Abweichung von der Relativitätstheorie auf sehr grossen Skalen?
- Weitere Tests der ART auf grossen Skalen sind möglich und nötig.