

Clifford Will University of Florida, Gainesville Institut d'Astrophysique de Paris

Einstein triumphant, or was he?

Early struggles and uncertainties

1st century themes

- High precision technology (clocks, space)
- Frameworks for comparing and testing theories
- Theory-experiment synergy

2nd century themes

- Strong-field tests
- Gravitational-wave tests
- Extreme-range tests

- Early struggles
- Highlights from the first century
- Prospects for the second century
 - Geometry bends light
 - Geometry warps time
 - Geometry moves mass
 - Geometry makes waves

Geometry bends light: The 1919 Eclipse

E

A. S. Eddington

LIGHTS ALL ASKEW

Men of Science More or Less Agog Over Results of Eclipse Observations.

EINSTEIN THEORY TRIUMPHS

Stars Not Where They Seemed or Were Calculated to be, but Nobody Need Worry.

A BOOK FOR 12 WISE MEN

No More in All the World Could Comprehend It, Said Einstein When His Daring Publishers Accepted It.

from Principe

Sobral site

The public Einstein

Geometry bends light: The PPN parameter y

Geometry bends light: Gravitational lenses

?

Einstein's gift to astronomy

Geometry bends light: and wins an Oscar!

Starring: Matthew McConaughey, Anne Hathaway, Jessica Chastain, Michael Caine, ... Image based on calculations by Kip Thorne and Double Negative Co.

Geometry bends light: Black hole shadows

Event Horizon Telescope (EHT)

- mm wavelength
- horizon scale angular resolution at SgrA* and M87

- Early struggles
- Highlights from the first century
- Prospects for the second century
 - Geometry bends light
 - Geometry warps time
 - Geometry moves mass
 - Geometry makes waves

Geometry warps time: The redshift

- 1907: Einstein's "happiest thought"
- 1917: C. E. St. John and others: no Solar redshift effect
- 1960: Pound-Rebka: gamma rays from ⁵⁷Fe over 23 m
- 1962, 1972, 1991: finally, the Solar redshift measured
- 1976: Gravity Probe A
- 1980s now: GPS
- 2010: ²⁷Aluminum ion clocks over 1/3 m
- 2017: ACES/PHARAO on the ISS

GPS Nominal Constellation 24 Satellites in 6 Orbital Planes 4 Satellites in each Plane 20,200 km Altitudes, 55 Degree Inclination

- Early struggles
- Highlights from the first century
- Prospects for the second century
 - Geometry bends light
 - Geometry warps time
 - Geometry moves mass
 - Geometry makes waves

Geometry moves mass: Mercury's perihelion

- 1859 Leverrier's conundrum
- · 1900 A turn-of-the century crisis
- · 1915 "Palpitations of the heart"

Planet	Ac	lvance
Venus		$\overline{277.8}$
Earth		90.0
Mars		2.5
Jupiter		153.6
Saturn		7.3
Total		531.2
Discrepa	ncy	42.9

J₂=2.2×10⁻⁷

Pericenter advance and strong-field GR

Pericenter advance and strong-field GR Stellar clusters around SMBH

Hopman & Alexander 2007 Merritt, Alexander, Mikkola & CMW 2011

- Early struggles
- Highlights from the first century
- Prospects for the second century
 - Geometry bends light
 - Geometry warps time
 - Geometry moves mass
 - Geometry makes waves

Geometry makes waves

Hermann Bondi 1950s

Bob Forward

Ron Drever

Rai Weiss

A Global Network of Interferometers

LIGO Hanford 4 km (2015)

GEO Hannover 600 m

LIGO Livingston 4 km (2015)

Pulsar Timing Arrays

Gravitational-wave tests of GR: Polarizations

- Array of ground based detectors
- Modulation due to eLISA's orbit
- Correlation of pulsar timing residuals as a function of angular separation

Gravitational-wave tests of GR: Speed

$$1 - \frac{v_g}{c} = 5 \times 10^{-12} \left(\frac{200 \,\mathrm{Mpc}}{D}\right) \left(\frac{\Delta t}{1 \,\mathrm{day}}\right)$$

The first GR test following GW detection?

Source

Gravitational-wave tests of GR: Graviton mass

Detector

CMW, PRD 57, 2061 (1998)

Inspiralling Compact Binaries: Strong Gravity GR Tests?

Inspiral phase: test alternative theories using precise phase evolution (PPE, PN)

Merger phase: dynamical scalarization?

Ringdown phase: Test the no-hair theorems

Strong-Field tests of general relativity

- neutron star masses and radii
- existence of event horizons with ADAFs
- measurement of maximum BH spins
- short gamma-ray bursts
- tidal disruption events

Extreme-range tests of general relativity

- gravity at sub-mm and micron scales
- dark matter vs. MOND at galactic scales
- evolution of structure dark energy vs modified gravity
- CMB fluctuations tests of modified gravity

Clifford Will University of Florida, Gainesville Institut d'Astrophysique de Paris